101LD 1111 111101 11111 01111 1111 (2011) 7 011 0, 188810 21011 000 18811 1271, 2000

EFFECT OF INTEGRATED WEED MANAGEMENT PRACTICES ON GROWTH, YIELD AND QUALITY OF LINSEED (Linum usitatissimum L.)

¹CHHAGANIYA, H. J.; ²PATEL, A. P.; ³PATEL, H. N.; ⁴PATEL, A. M.; ⁵PATEL, A. J. AND ⁶*PATEL, D. D.

DEPARTMENT OF AGRONOMY N.M.COLLEGE OF AGRICULTURE, NAVSARI AGRICULTURAL UNIVERSITY NAVSARI – 396 450, GUJARAT, INDIA

*EMAIL: ddpatel@nau.in

ABSTRACT

Field experiment was conducted on deep black soil of the College Farm, N. M. College of Agriculture, Navsari Agricultural University, Navsari during rabi 2014-15 to study the effect of integrated weed management practices on growth, yield and quality of linseed (Linum usitatissimum L.). Interculturing (IC) + hand weeding (HW) at 20 and 40 DAS significantly increased seed yield (810 kg/ha), stover yield (2391 kg/ha), oil yield (310 kg/ha) and weed control efficiency (84.09%) and reduced the weed population and dry weight of weeds (248.85 kg/ha), which was followed by application of pendimethalin @ 750 g/ha as pre-emergence + interculturing and hand weeding at 30 DAS.

KEY WORDS: Integrated Weed Management, linseed, oil yield

INTRODUCTION

Linseed or flax is among the oldest crop plants cultivated for the purpose of oil and fiber. It belongs to the genus Linum and family Linaceae. The botanical name, Linum usitatissimum was given Linnaeus in his book "Species Plantarum" 1857). It is an (Linnaeus, herbaceous plant with shallow root system. The common names flax and linseed are used in North America and respectively, for L. usitatissimum. Oilseed varieties and fiber varieties are specialized development of this species (Millam et al., 2005). The cultivars grown primarily for seed/oil purpose are relatively short in height and possess more secondary branches and seed bolls (seed capsule). The cultivars grown for fiber purpose are tall growing with straight culms and have fewer secondary branches. Every part of linseed plant is utilized commercially, either directly or after processing. Seed contains 33 to 47 per cent oil. A small quantity is directly used for edible purposes. About 20 per cent of the total oil produced is used at farmer level and the rest 80 per cent oil goes to industries in various forms, such as boiled oil, borated eposidized aluminated oil, urethane oil, isomerized oil etc. The oil (>66%) is rich in linolenic acid and is a perfect drying oil. The seed of linseed content nutrient value per 100 g is carbohydrates 28.88 g, sugars 1.55 g, fat 42.16 g, protein 18.29 g and dietary fibers 27.39 g (Anonymous, 2013).

The present weed control practices are characterized by intensive use of manual labour and animal power. Both of them are in short supply and increasingly became uneconomical. Adverse soil and climatic conditions prevent timely removal of weeds through manual and mechanical

¹M.Sc. (Agri.) Student, N.M. College of Agriculture, NAU, Navsari, Gujarat

²Associate Professor, College of Agriculture, NAU, Waghai, Gujarat

³Assistant Research Scientist, Cotton Wilt Breeding Station, NAU, Hansot, Gujarat

⁴Assistant Research Scientist, Office of the Directorate of Research, NAU, Navsari, Gujarat

⁵Assistant Professor, Department of Agronomy, NMCA, NAU, Navsari, Gujarat

 $^{^6}$ Principal, Polytechnic in Agriculture, NAU, Bharuch, Gujarat

ISSN: 2277-9663

means. Linseed having less branching habit, small leaf area and show growth during initial growth period, it complete poorly with weeds and often suffers from severe weed competition. Unchecked weed growth has been reported to reduce grain yield of linseed to the tune of 34.2 per cent (Mani et al., 1968). Weeds the essential component of agro-ecosystems, interfere with crops and lead to enormous crop losses (Vaid et al., 2010).

Weeds infestation imposes serious constraints in realizing higher yields. Hand weeding and interculturing between the rows are the conventional methods of control. These methods weed troublesome due to labour problem in weeding peak and unavailability suitable intercultural implements. Under such circumstances suitable integrated weed-management practices remains the only choice for the farmers. Broad-leaf and grassy weeds are commonly associated with this crop which is itself of similar nature. Therefore, for effective control of these weeds with the use of selective herbicide is difficult and need the integration of intercultural and hand weeding operations also (Angiras et al., 1991).

MATERIALS AND METHODS

A field experiment was conducted during rabi season of 2014-15 at the College Farm, N. M. College Agriculture, Navsari Agricultural University, Navsari. The experiment was conducted in randomized block design with twelve treatments i.e. T_1 : Pendimethalin @ 750 g/ha as emergence, T2: Oxyfluorfen @ 60 g/ha as pre-emergence, T₃: Isoproturon @ 750 g/ha as post-emergence at 15-20 DAS, T₄: Quizalofop ethyl @ 75 g/ha as postemergence at 15-20 DAS, T₅: T₁ fb IC and HW at 30 DAS, T₆: T₂ fb IC and HW at 30 DAS, T₇: T₃ fb IC and HW at 30 DAS, T₈: T_4 fb IC and HW at 30 DAS, T_9 : $T_1 + T_4$, T₁₀:1 HW at 20 DAS, T₁₁: Weed free (IC fb HW at 20 and 40 DAS) and T₁₂:Weedy with replications. check three

experimental soil was deep black having 235 kg/ha available N, 38 kg/ha available P₂O₅ and 463 kg/ha available K₂O with 7.6 pH. Linseed local variety was grown on November 20, 2014 at 30 x 10 cm spacing. Observation regarding growth i.e. plant height and number of branches per plant were recorded at harvest. Weed study i.e. weed count (Number per m²) were recorded at 25 and 50 DAS, and also at harvest along with weed control efficiency (%) and weed index (%). Dry weight of weeds (kg/ha), seed yield (kg/ha) and stover yield (kg/ha) were recorded at harvest, while observation regarding seed yield, stover yield, oil content (%) and oil yield (kg/ha) were recorded at harvest. The analyzed were statistically data adopting standard procedures the described by Panse and Sukhatme (1985).

RESULTS AND DISCUSSION Weeds flora

Weed flora identified in experiment plot were monocot, dicot and sedges weeds. In monocot Cynodon dactylon, Digitaria sanguinalist, Bracharia spp., Sorghum halepense and Echinochloa crusgallis and in dicot weeds, Alternanthera sessillis, Physalis minima, Vernonia Euphorbia hirta, cinerea, Amaranthus viridis and Digera arvensis were observed, while under sedges weed, Cyperus rotundus was observed.

Effect of weed management practices on weed count and dry weight of weed

A perusal of data presented in Tables 1 indicated that the treatment weed free i.e., interculturing followed by hand weeding at 20 and 40 DAS (T₁₁) recorded significantly the lowest number monocot, dicot and sedges weeds at 25 DAS, 50 DAS and at harvest, but remained at par with treatments T_{10} (1 HW at 20 DAS), T_5 (T_1 fb IC and HW at 30 DAS) and pendimethalin @ 750 g/ha as preemergence at 25 DAS (T_1) . The treatment having one hand weeding at 20 DAS (T_{10}) recorded significantly the lowest number of monocot, dicot and sedges weeds next to T_{11} (1.46, 1.33 and 1.46 per cent m²). It ISSN: 2277-9663

clearly indicated that interculturing followed by 1 HW significantly reduced the weed population during initial period of crop growth. At 50 DAS and at harvest, besides treatment T₁₁ (IC fb HW at 20 and 40 DAS), T_5 , T_8 and T_6 recorded significantly the lower number monocot, dicot and sedge weeds compared to the treatment weedy check (T_{12}) . The removal of weed at regular interval through hand weeding at 20 and 40 DAS accounted for less count of monocot, dicot and sedge weeds under treatment T₁₁. At harvest, treatment T₅, T₈ and T₆ were found at par with treatment weed free i.e. interculturing followed by hand weeding at 20 and 40 DAS (T₁₁) for monocot, dicot and sedge weeds. Tomar et al. (1990) reported significant reduction in grassy and broad leaved weeds which causes 37.9 per cent reduction in yield of linseed. The lowest dry weight of weeds (248.85 kg/ha) was recorded at harvest under the treatment T₁₁ weed free (interculturing followed by hand weeding at 20 and 40 DAS).

Weed control efficiency and weed index

A perusal of data presented in Tables 1 indicated that weed free treatment i.e. interculturing followed by hand weeding at 20 and 40 DAS (T₁₁) recorded the highest weed control efficiency (84.09 %), which was followed by treatment pendimethalin @ 750 g/ha as PE fb IC and HW at 30 DAS (T₅) and quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS fb IC and HW at 30 DAS (T₈) having weed control efficiency of 81.60 and 80.90 per cent at harvest, respectively. While, weed index was recorded in the manner of $T_{11} < T_5 <$ $T_8 < T_6 < T_7 < T_9 < T_1 < T_4 < T_2 < T_{10} < T_3 <$ T_{12} . Frisen and freer (1991) reported that only pre emergence herbicides application was less effective and allow weed competition in later stages, therefore along with cultural practices (hoeing or weeding) post emergence herbicides maximum weed control efficiency. Bali et al. (2016) reported that weed free plots recorded highest weed control efficiency

followed by hand weeding (15 & 35 DAS).

Effect of weed management practices on growth attributes of linseed

The highest plant height at harvest (63.06 cm) and number of branches per plant (8.43) were observed under the treatment weed free i.e. IC followed by HW at 20 and 40 DAS (T_{11}) and was statistically at par with T₅, T₈ and T₆ (Table 2). It is established fact that weed compete for light, space, nutrient and water with the crop and hamper overall growth of the same. If weeds are removed by weed control methods, the trend was reversed and crop gain height as well as more number of branches per plant. Mechanical weeding improved the soil aeration and increased nutrient availability to the crop through active mineralization and decomposition. It was also accordance with Seema et al. (2014).

Effect of weed management practices on yield

A perusal of data presented in Tables 2 indicated that seed yield (810 kg/ha) and stover yield (2391 kg/ha) were found significantly higher under treatment weed free i.e. interculturing followed by hand weeding at 20 and 40 DAS (T_{11}) , which was remained at par with treatments T₅ (Pendimethalin @ 750 g/ha as PE fb IC and HW at 30DAS), T₈ (Quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS fb IC and HW at 30DAS), T₆ (Oxyfluorfen @ 60 g/ha as PE fb IC and HW at 30 AS) and T₇ (Isoproturon @ 750 g/ha as PoE at 15-20 fb IC and HW at 30 DAS). DAS Vedharethinam et al. (2004) reported the similar results in sunflower, and Jain and Jain (2016) in linseed. All weed control methods established their superiority over weedy check in respect of seed yield and stover yield by virtue of reduced weed competition. Angiras et al. (1991) also reported that herbicidal treatments produced significantly higher seed yield over un-weeded check in linseed. Mishra et al. (2003) also recorded higher yield in

ISSN: 2277-9663

hand weeding treatment than chemical weed management in linseed.

Effect of weed management practices on quality of linseed

The highest oil yield (310 kg/ha) was recorded with the treatment T_{11} i.e. weed free (IC fb HW at 20 and 40 DAS). The higher oil yield received under this treatment was due to the higher seed yield recorded under this treatment which directly responsible for higher oil yields (Table 2). The oil content in seed was not differed significantly due to various treatments. This might be due to oil content is mainly a genetic character cannot be manipulated which agronomic practices.

CONCLUSION

Based on the results from the experimentation, it seems quite logical to conclude that interculturing (IC) + hand weeding (HW) at 20 and 40 DAS significantly increased seed yield (810 kg/ha), stover yield (2391 kg/ha), oil yield (310 kg/ha) and weed control efficiency (84.09%) and reduced the weed population and dry weight of weeds (248.85 kg/ha), which was followed by application of pendimethalin @ 750 g/ha as preemergence + interculturing and hand weeding at 30 DAS.

REFERENCES

- Angiras, N. N.; Badiyala, D. and Singh, C. M. (1991). Comparative efficacy of herbicides for weed control in flax (Linum usitatissimum L.). Indian J. Weed Sci., 23(3-4): 19-23.
- Anonymous (2013). www.wikipedia.org/ linseed
- Bali. A.; Bazaya, B. R.; Chand, L. and Swami, C. (2016). Weed manage in soybean (Glycine max L.). The Bioscan, 11(1): 255-257.
- Friesen, G. H. and Freer, J. S. (1991). The control of broad leaved weeds in linseed. Aspects Appl. Biol.,28: 155-160.
- Jain, D. N. and Jain, V. (2016). Weed management with pre and post emergence herbicides in linseed

- (Linum usitatissimum L.). Indian J. Weed Sci., 48(1): 93-94.
- Linnaeus, C. (1857). Species Plantarum. The Royal Society of London, UK, pp: 300.
- Mani, V. S.; Gautam, K. C. and Chakraborty, T. K. (1968). Losses in crop yield due to weed growth. PANS, 14: 23-27.
- Millam, S.; Bohus, O. and Anna, P. Plant (2005).cell and biotechnology studies in Linum usitatissimum - A review. Plant Cell Tissue Organ Cult., 82: 93-103.
- Mishra, J. S.; Shingh, V. P. and Yaduraju, N. T. (2003). Bio-efficacy and economics of herbicidal weed control in irrigated linseed (Linum usitatissimum L.). Indian J. Weed Sci., 35(1-2): 154-155.
- Panse, V. G. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural Workers, ICAR, New Delhi, pp. 187-197.
- Seema, Krishna, M. and Devi, M. T. T. (2014). Effect of nitrogen and weed management on nutrient uptake by weeds under direct seeded aerobic rice. The Bioscan, 9(2): 535-537.
- Tomar, S. S.; Baijpal, R. P. and Bisen, S. V. (1990). Chemical weed control in linseed. Indian J. Weed Sci., 22: 23-27.
- Vaid, S.; Daizy, R.; Batish Singh, H. P. and Kohli. R. K. (2010).Phytotoxic effect of eugenol towards two weedy species. The Bioscan. 5(3): 339-341.
- Vedharethinam. R.: Sundari. A.: Kalaisudarson, S. and Kumar, S. M. (2004). Economic of integrate weed management practices in sunflower based intercropping system. Indian J. Weed Sci., 36(3&4):308.

www.arkgroup.co.in **Page 364** ______

Table 1: Effect of weed management practices on monocot, dicot and sedges weed density at 25, 50 DAS and at harvest

Treatments		Monocot Weed (per m ²)			Dicot Weed (per m ²)			Sedge Weed (per m ²)			Dry Weight	Weed Control	Weed Index
		25 DAS	50 DAS	At Harvest	25 DAS	50 DAS	At Harvest	25 DAS	50 DAS	At Harvest	of Weeds at Harvest (kg/ha)	Efficiency (%)	(%)
T_1	Pendimethalin @ 750 g/ha as PE	1.68	3.67	5.46	1.68	4.84	6.16	1.53	6.16	7.15	883.85	43.51	17.47
		(2.33)	(13)	(29.33)	(2.33)	(23)	(37.66)	(1.88)	(37.66)	(51)			
T_2	Oxyfluorfen @ 60 g/ha as PE	2.11 (4)	3.85 (14.33)	5.72 (32.33)	2.20 (4.33)	5.23 (27)	6.40 (40.66)	2.34 (5)	6.27 (39)	7.48 (56.66)	976.72	37.58	20.65
T_3	Isoproturon @ 750 g/ha as PoE at 15-20	3.89	4.40	6.25	4.12	5.51	6.96	4.44	6.48	7.83	1034.85	33.86	22.01
	DAS	(14.66)	(19)	(38.66)	(16.66)	(30)	(48.33)	(19.33)	(41.66)	(61)			
T ₄	Quizalofop ethyl @ 75 g/ha as PoE at	3.84	3.62	5.60	4.00	4.25	6.21	3.92	5.86	7.31	857.52	45.20	18.84
7	15-20 DAS	(14.33)	(12.66)	(31)	(15.66)	(17.66)	(38.33)	(15)	(34)	(53.33)			
T ₅	Pendimethalin @ 750 g/ha as PE fb IC	1.56	2.03	3.43	1.52	1.95	3.26	1.52	3.07	5.17	286.85	81.66	1.03
	and HW at 30DAS	(2.66)	(3.66)	(11.33)	(2)	(3.33)	(10.33)	(1.81)	(9)	(26.33)			
T ₆	Oxyfluorfen @ 60 g/ha as PE fb IC and	1.95	2.19	3.62	2.48	2.10	3.37	2.96	3.23	5.32	360.52	76.96	11.11
Ů	HW at 30 AS	(3.33)	(4.33)	(12.66)	(5.66)	(4)	(11)	(8.33)	(10)	(28)			
T ₇	Isoproturon @ 750 g/ha as PoE at 15-20	4.02	2.79	4.33	4.18	2.60	4.54	3.58	4.12	6.16	578.99	63.00	12.22
,	DAS fb IC and HW at 30 DAS	(15.66)	(7.33)	(17)	(17)	(6.33)	(20)	(12.33)	(16.66)	(37.66)			
T ₈	Quizalofop ethyl @ 75 g/ha as PoE at	3.76	2.11	3.57	4.04	2.03	3.32	3.48	3.17	5.22	298.85	80.90	1.44
	15-20 DAS fb IC and HW at 30DAS	(13.33)	(4)	(12.33)	(16)	(3.33)	(10.66)	(11.66)	(9.66)	(27)			
T ₉	Pendimethalin @ 750 g/ha as PE +	1.54	2.91	5.78	1.77	2.73	4.65	1.53	5.66	7.27	696.52	55.48	15.02
	Quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS	(2.33)	(8)	(33.33)	(2.66)	(6)	(21.33)	(1.90)	(31.66)	(5266)			
T_{10}	1 HW at 20 DAS	1.46	5.46	7.32	1.34	4.87	7.24	1.46	7.98	8.47	1240.19	20.74	21.60
		(1.66)	(29.33)	(53.33)	(1.33)	(23.33)	(52.33)	(1.66)	(63.33)	(71.66)			
T_{11}	Weed free (IC fb HW at 20 and 40 DAS)	1.34	1.85	3.38	1.22	1.76	2.90	1.34	2.85	4.80	248.85	84.09	0.00
		(1.33)	(3)	(11)	(1)	(2.66)	(8)	(1.33)	(7.66)	(22.66)			
T_{12}	Weedy check	5.27	6.94	8.96	5.11	7.63	8.54	6.31	9.23	10.41	1564.85	0.00	58.80
		(27.33)	(47.66)	(80)	(25.66)	(58)	(72.66)	(39.33)	(80)	(108.33)			
S.Em <u>+</u>		0.13	0.19	0.31	0.20	0.28	0.40	0.16	0.31	0.44	46.65	-	-
CD (CD (P=0.05)		0.55	0.91	0.59	0.82	1.17	0.48	0.92	1.30	136.83	-	-
C.V. %		8.56	9.45	10.21	12.44	12.85	13.10	9.96	10.18	11.23	10.74	-	-

Note: Transformation $\sqrt{X+0.5}$ (Figures in parenthesis are original values)

Table 2: Effect of weed management on growth parameters, yield and quality of linseed

	Treatments	Plant Height (cm) at Harvest	Number of Branches per Plant at Harvest	Seed Yield (kg/ha)	Stover Yield (kg/ha)	Oil Content (%)	Oil Yield (kg/ha)
T_1	Pendimethalin @ 750 g/ha as PE	55.59	6.66	668	2056	37.00	248
T_2	Oxyfluorfen @ 60 g/ha as PE	55.15	6.56	642	2039	37.00	238
T ₃	Isoproturon @ 750 g/ha as PoE at 15-20 DAS	52.54	6.33	631	2024	36.93	234
T_4	Quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS	53.65	6.59	657	2053	36.90	243
T_5	Pendimethalin @ 750 g/ha as PE fb IC and HW at 30DAS	61.59	7.89	801	2358	38.03	305
T_6	Oxyfluorfen @ 60 g/ha as PE fb IC and HW at 30 AS	60.90	7.65	720	2220	37.73	272
T ₇	Isoproturon @ 750 g/ha as PoE at 15-20 DAS fb IC and HW at 30 DAS	55.98	6.86	711	2206	37.33	265
T ₈	Quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS fb IC and HW at 30DAS	61.19	7.53	798	2351	37.00	296
T ₉	Pendimethalin @ 750 g/ha as PE + Quizalofop ethyl @ 75 g/ha as PoE at 15-20 DAS	55.78	6.84	688	2061	37.50	258
T_{10}	1 HW at 20 DAS	51.41	5.50	635	2045	36.33	230
T_{11}	Weed free (IC fb HW at 20 and 40 DAS)	63.06	8.43	810	2391	38.40	310
T ₁₂	Weedy check	49.65	5.00	510	1982	35.60	183
S.Em <u>+</u>		2.36	0.52	34	112	2.17	16.81
CD (CD (P=0.05)		1.55	99	328	NS	49.32
C.V. %		7.28	13.45	8.5	9.0	10.14	11.32